| 注册
首页|期刊导航|灾害学|基于机器学习的大雾天气背景下特强浓雾本地化诊断研究

基于机器学习的大雾天气背景下特强浓雾本地化诊断研究

史达伟 李超 史逸民 张银意

灾害学2018,Vol.33Issue(2):193-199,7.
灾害学2018,Vol.33Issue(2):193-199,7.DOI:10.3969/j.issn.1000-811X.2018.02.034

基于机器学习的大雾天气背景下特强浓雾本地化诊断研究

Study on the Localization Diagnosis of Extra Heavy Fog on The Background of the Fog Weather Based on Machine Learning Algorithms

史达伟 1李超 2史逸民 1张银意1

作者信息

  • 1. 江苏省连云港市气象局,江苏连云港222006
  • 2. 江苏省气象台,江苏南京210008
  • 折叠

摘要

Abstract

Low visibility fog is an important cause of traffic accidents.Prediction of extra heavy fog is a difficult problem in weather forecast.Based on the Lianyungang 58044 station 2014-2016 hourly meteorological data,selection of fog occurs,the machine learning decision tree algorithm is lower than 50m of strong visibility fog establish diagnosis model based on Meteorological factors.The results show that the diagnosis model of CART decision tree algorithm can visually and accurately diagnose the extra heavy fog based on the model,and has high generalization ability,learning by accounting for about 75 % of the study sample data,the accuracy of the model of learning ability is 90.04%,the remaining 25% sample data on the left and right model generalization test,testing accuracy is 82.25%;from the decision tree model can be found,compared with other grades of fog,ultra extra heavy fog is the most critical factor is the temperature;diagnostic effect of LSVM algorithm for extra heavy fog is best,but can understand the low degree of complexity,higher than the CART algorithm is easy to use.

关键词

大雾/特强浓雾/机器学习/本地化/诊断模型/CART决策树算法

Key words

Fog/Extra heavy fog/Machine learning/Localization/Diagnosis model/CART Algorithm

分类

资源环境

引用本文复制引用

史达伟,李超,史逸民,张银意..基于机器学习的大雾天气背景下特强浓雾本地化诊断研究[J].灾害学,2018,33(2):193-199,7.

基金项目

淮河流域气象开放研究基金(HRM201602) (HRM201602)

江苏省气象局2014年现代化项目“江苏海洋气象综合业务平台” ()

江苏省科技厅项目(BE2011720) (BE2011720)

连云港市科技局项目(SH1422,SH1013) (SH1422,SH1013)

江苏省气象局青年基金(KQ201802) (KQ201802)

灾害学

OA北大核心CSCDCSTPCD

1000-811X

访问量0
|
下载量0
段落导航相关论文