| 注册
首页|期刊导航|北京师范大学学报(自然科学版)|面向地表特征变化区域的时空遥感数据融合方法研究

面向地表特征变化区域的时空遥感数据融合方法研究

袁周米琪 张锦水

北京师范大学学报(自然科学版)2017,Vol.53Issue(6):727-734,封2-封3,10.
北京师范大学学报(自然科学版)2017,Vol.53Issue(6):727-734,封2-封3,10.DOI:10.16360/j.cnki.jbnuns.2017.06.015

面向地表特征变化区域的时空遥感数据融合方法研究

Fusion of spatiotemporal remotesensing data for changing surface characteristics

袁周米琪 1张锦水2

作者信息

  • 1. 地表过程与资源生态国家重点实验室,北京师范大学地理科学学部,100875,北京
  • 2. 环境演变与自然灾害教育部重点实验室,北京师范大学地理科学学部,100875,北京
  • 折叠

摘要

Abstract

High spatiotemporal remote sensing data can be used to describe biophysical and structural characteristics of vegetation and phonological changes,playing an important role in vegetation monitoring.The aim of the present work was to improve fusion-data performance in areas where land surface characteristics changes occur in different directions and to propose an easy and efficient method for spatiotemporal data fusion:Downscaling Difference Spatial and Temporal Data Fusion Algorithm (DDSTDFA),to fuse Landsat 8 OLI fine-resolution images and MODIS/NOAA coarse-resolution images.This method was compared with STDFA and FSDAF.DDSTDFA algorithm can predict changes in surface characteristics occurring in different directions simultaneously,and improve defects of un-mixing based algorithms.Compared with STDFA,DDSTDFA showed higher accuracies for different areas with changing land-surface characteristics.DDSTDFA-predicted images resembled real images by visual analysis.Block and patch effects found in previous methods were effectively avoided.Compared with FSDAF algorithm,efficiency of DDSTDFA was improved by 50-60% with high accuracy.DDSTDFA is therefore more suitable for wide-range high spatiotemporal image datafusion,this will provide a wealth of remote-sensing image data sources for land surface dynamic monitoring.

关键词

高时、空分辨率影像融合/降尺度/薄板样条插值

Key words

high spatiotemporal data fusion/downscaling/thin plate spline (TPS)

分类

信息技术与安全科学

引用本文复制引用

袁周米琪,张锦水..面向地表特征变化区域的时空遥感数据融合方法研究[J].北京师范大学学报(自然科学版),2017,53(6):727-734,封2-封3,10.

基金项目

国家重点研发计划“粮食丰产增效科技创新专项子课题”资助项目(2017YFD0300402-6) (2017YFD0300402-6)

北京师范大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0476-0301

访问量1
|
下载量0
段落导航相关论文