| 注册
首页|期刊导航|电工技术学报|基于气象信息粒还原的台风分时段短期负荷预测

基于气象信息粒还原的台风分时段短期负荷预测

李滨 黄佳 吴茵 覃芳璐

电工技术学报2018,Vol.33Issue(9):2068-2076,9.
电工技术学报2018,Vol.33Issue(9):2068-2076,9.DOI:10.19595/j.cnki.1000-6753.tces.170385

基于气象信息粒还原的台风分时段短期负荷预测

Typhoon-Period Short Term Load Forecasting Based on Particle Reduction of Weather Information

李滨 1黄佳 2吴茵 3覃芳璐1

作者信息

  • 1. 广西电力系统最优化与节能技术重点实验室(广西大学) 南宁 530004
  • 2. 广西电网有限责任公司南宁供电局 南宁 530028
  • 3. 广西电网有限责任公司电力调度控制中心 南宁 530023
  • 折叠

摘要

Abstract

During the typhoon period, the weather will undergo a three-stage change, and the periodic model of power load will be broken. In order to improve the accuracy of load prediction during the typhoon period, a time load forecasting method based on particle reduction of weather information is proposed. To adapt to the process of weather changes in typhoon transit, the trend of load level during the typhoon period is regarded as the segmentation function, and the time period is determined by the determination condition of the typhoon mode. According to the great correlation between adjusting load and change of urban load affected by typhoon, load variation model is established by multiple linear regression fitting the key factors. When the wind speed reaches a certain threshold, the loss of load caused by destructive typhoon is considered. The basic adjusting forecasting model is established by seeking similar Typhoon-free properties environments in the method of particle reduction for weather information. The simulation results of data validation in Guangxi electric power grid provide a more accurate data support for the grid scheduling arrangement during the typhoon period.

关键词

台风负荷预测/气象信息粒还原/分时段预测/多元线性回归拟合

Key words

Typhoon forecasting/weather information for particle reduction/time prediction/multiple linear regression

分类

信息技术与安全科学

引用本文复制引用

李滨,黄佳,吴茵,覃芳璐..基于气象信息粒还原的台风分时段短期负荷预测[J].电工技术学报,2018,33(9):2068-2076,9.

基金项目

国家自然科学基金(51407036)和国家重点基础研究发展计划(973计划)(2013CB228205)资助项目. (51407036)

电工技术学报

OA北大核心CSCDCSTPCD

1000-6753

访问量0
|
下载量0
段落导航相关论文