| 注册
首页|期刊导航|电力建设|基于深度学习的电力系统暂态稳定评估方法

基于深度学习的电力系统暂态稳定评估方法

周悦 谭本东 李淼 杨旋 周强明 张振兴 谭敏 杨军

电力建设2018,Vol.39Issue(2):103-108,6.
电力建设2018,Vol.39Issue(2):103-108,6.DOI:10.3969/j.issn.1000-7229.2018.02.013

基于深度学习的电力系统暂态稳定评估方法

Transient Stability Assessment of Power System Based on Deep Learning Technology

周悦 1谭本东 2李淼 1杨旋 1周强明 1张振兴 1谭敏 1杨军2

作者信息

  • 1. 国网湖北省电力公司,武汉市 430077
  • 2. 武汉大学电气工程学院,武汉市 430072
  • 折叠

摘要

Abstract

In the field of machine learning,transient stability assessment can be considered as a two-class problem of estimating the stability boundary through large number of fault samples.This paper proposes a method of deep learning to solve this problem.The method consists of four stages:firstly,using samples to construct the original input feature for describing the dynamic characteristics of the power system;secondly,variational auto-encoders (VAE) is used to perform unsupervised learning on the original input feature to obtain high-order features;thirdly,the supervised training of convolution neural network (CNN) is carried out to obtain the relationship between high order characteristic and transient stability of power system;finally,the model is applied to the transient stability assessment of power system.Simulation on the New England 39-bus test system shows that the proposed approach has high accuracy,rare misclassification of unstable sample and excellent robustness with noise for transient stability assessment (TSA).Therefore,it is suitable for quasi-real-time online transient stability assessment based on wide-area measurement information.

关键词

深度学习/变分自动编码器(VAE)/高阶特征/卷积神经网络(CNN)/暂态稳定评估(TSA)/机器学习/无监督学习

Key words

deep learning/variational auto-encoders(VAE)/high-order features/convolution neural network(CNN)/transient stability assessment(TSA)/machine learning/unsupervised learning

分类

信息技术与安全科学

引用本文复制引用

周悦,谭本东,李淼,杨旋,周强明,张振兴,谭敏,杨军..基于深度学习的电力系统暂态稳定评估方法[J].电力建设,2018,39(2):103-108,6.

基金项目

国家自然科学基金项目(51277135) (51277135)

国家电网公司科技项目(521500160011)Project supported by National Natural Science Foundation of China (51277135) (521500160011)

Science and Technology Project of State Grid Corporation of China(521500160011) (521500160011)

电力建设

OA北大核心CSTPCD

1000-7229

访问量0
|
下载量0
段落导航相关论文