| 注册
首页|期刊导航|中北大学学报(自然科学版)|基于改进的模糊C均值聚类算法的颗粒种子图像分割方法

基于改进的模糊C均值聚类算法的颗粒种子图像分割方法

王宇 陈婧 王高

中北大学学报(自然科学版)2018,Vol.39Issue(2):177-182,6.
中北大学学报(自然科学版)2018,Vol.39Issue(2):177-182,6.DOI:10.3969/j.issn.1673-3193.2018.02.012

基于改进的模糊C均值聚类算法的颗粒种子图像分割方法

Particle Seed Images Segmentation Method Based on the Improved Fuzzy C-means Clustering Algorithm

王宇 1陈婧 2王高3

作者信息

  • 1. 山西工程职业技术学院 电气工程系,山西 太原030009
  • 2. 中国航天科工集团第二研究院706所,北京100854
  • 3. 中北大学 仪器科学与动态测试教育部重点实验室,山西 太原030051
  • 折叠

摘要

Abstract

Adding the penalty term in the obj ective function to represent the neighboring pixel value of traditional FCM algorithm was proposed to solve the noise sensitiveness problems of the crop seed digital image segmentation by applying conventional fuzzy c-means (FCM)clustering algorithm.The spatial in-formation of image was used to improve clustering accuracy.Distance factor of neighboring pixel was used to modify spatial effect.Fuzzy weighting factor was used to improve the obj ective function.The experimental results indicate that the improved FCM algorithm's anti-noise performance is better than traditional FCM algorithm when segmenting crop seeds from background image.The program run time is about half of conventional FCM algorithm.The accuracy rate is increased from 93 % to 99 %,which lays a good foundation for crop seeds counting detection by machine vision system.

关键词

颗粒种子图像/图像分割/K-means聚类算法/模糊C均值聚类(FCM)算法

Key words

particle seed image/image segmentation/K-means clustering algorithm/FCM algorithm

分类

信息技术与安全科学

引用本文复制引用

王宇,陈婧,王高..基于改进的模糊C均值聚类算法的颗粒种子图像分割方法[J].中北大学学报(自然科学版),2018,39(2):177-182,6.

基金项目

国家自然科学基金资助项目(61573323) (61573323)

山西省留学人员科研资助项目(2015076) (2015076)

中北大学学报(自然科学版)

1673-3193

访问量0
|
下载量0
段落导航相关论文