| 注册
首页|期刊导航|湖南大学学报(自然科学版)|电感式磨粒在线监测传感器灵敏度提高方法

电感式磨粒在线监测传感器灵敏度提高方法

贾然 马彪 郑长松 王立勇 杜秋 王凯

湖南大学学报(自然科学版)2018,Vol.45Issue(4):129-137,9.
湖南大学学报(自然科学版)2018,Vol.45Issue(4):129-137,9.DOI:10.16339/j.cnki.hdxbzkb.2018.04.017

电感式磨粒在线监测传感器灵敏度提高方法

Sensitivity Improvement Method of On-line Inductive Wear Particles Monitor Sensor

贾然 1马彪 1郑长松 1王立勇 2杜秋 1王凯1

作者信息

  • 1. 北京理工大学 机械与车辆学院,北京 100081
  • 2. 北京信息科技大学 现代测控技术教育部重点实验室,北京 100192
  • 折叠

摘要

Abstract

The main technical bottleneck in the research of on-line inductive wear particles monitoring sensor lies in the contradiction between the sensor sensitivity and channel diameter.The sensor with high sensitivity generally adopts the micro-flow channel structure,leading to a small maximum allowable flow rate,while the sensor with large channel diameter has markedly lower sensitivity.To satisfy the require-ments of online wear condition monitoring of heavy machinery,the sensitivity improvement method of large aperture inductive abrasive particle sensor is studied.It is proposed to make the sensor work in full resonance state,in which the excitation coil works in the parallel resonance state and the induction coil works in the series resonance state so as to jointly enhance the sensor output induced electromotive force caused by the wear particles.For the detection mechanism,a perturbation model of magnetic field caused by wear debris in the alternating magnetic field is established,which considers the eddy current effect of particles in alternating magnetic field and improves the practicability of the model.The experimental re-sults show that the resonance mechanism largely increases the sensitivity of the sensor,which can success-fully detect up to 75 μm ferromagnetic particles and 220 μm non-ferromagnetic particles,and satisfy the online monitoring requirements of initial abnormal wear stage of the heavy machineries.

关键词

磨粒监测/传感器/谐振/灵敏度

Key words

particle monitoring/sensor/resonances/sensitivity

分类

信息技术与安全科学

引用本文复制引用

贾然,马彪,郑长松,王立勇,杜秋,王凯..电感式磨粒在线监测传感器灵敏度提高方法[J].湖南大学学报(自然科学版),2018,45(4):129-137,9.

基金项目

国家自然科学基金资助项目(51475044),National Natural Science Foundation of China(51475044) (51475044)

北京市教委科技计划重点项目(KZ201611232032),Beijing Finance Found of Science and Technology Planning Project(KZ201611232032) (KZ201611232032)

湖南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文