| 注册
首页|期刊导航|华侨大学学报(自然科学版)|KPCA-LSSVM方法在视频时间序列预测中应用

KPCA-LSSVM方法在视频时间序列预测中应用

张观东 李军

华侨大学学报(自然科学版)2018,Vol.39Issue(2):281-285,5.
华侨大学学报(自然科学版)2018,Vol.39Issue(2):281-285,5.DOI:10.11830/ISSN.1000-5013.201708019

KPCA-LSSVM方法在视频时间序列预测中应用

Application of KPCA-LSSVM in Video Trace and Time Series Prediction

张观东 1李军1

作者信息

  • 1. 兰州交通大学自动化与电气工程学院,甘肃兰州730070
  • 折叠

摘要

Abstract

A prediction method based on kernel principal component analysis (KPCA) and least squares support vector machine (LSSVM) is proposed for the prediction of time series that increasing prediction precision and decreasing the computing complexity.Firstly,the input data will be mapped to high-dimensional feature space through kernel method,then the effective nonlinear principal element can be extracted in the feature space,and finally the time series model is established by LSSVM.In order to verify the validity of KPCA-LSSVM method,it is used in traffic flow and video flow prediction,and compared with single LSSVM and neural network in the same condition.The experimental results show that the model based on KPCA-LSSVM has good generalization and high identification accuracy compared with other methods.

关键词

时间序列预测/交通流量/视频流量/核主成分分析/最小二乘支持向量机

Key words

time series prediction/traffic flow/video flow/kernel principal component analysis/least squares support vector machine

分类

信息技术与安全科学

引用本文复制引用

张观东,李军..KPCA-LSSVM方法在视频时间序列预测中应用[J].华侨大学学报(自然科学版),2018,39(2):281-285,5.

基金项目

国家自然科学基金资助项目(51467008) (51467008)

华侨大学学报(自然科学版)

OA北大核心CSTPCD

1000-5013

访问量0
|
下载量0
段落导航相关论文