| 注册
首页|期刊导航|计量学报|基于三维点云聚类的坡度估计方法

基于三维点云聚类的坡度估计方法

李海波 曹云峰 丁萌 庄丽葵

计量学报2018,Vol.39Issue(3):304-309,6.
计量学报2018,Vol.39Issue(3):304-309,6.DOI:10.3969/j.issn.1000-1158.2018.03.04

基于三维点云聚类的坡度估计方法

A Method of Slope Estimation Based on Clustering of Three-dimensional Point Cloud

李海波 1曹云峰 1丁萌 1庄丽葵1

作者信息

  • 1. 南京航空航天大学,江苏南京210016
  • 折叠

摘要

Abstract

In order to improve the precision of slope estimation in Mars landing,a method of slope estimation based on clustering of three-dimensional point cloud and random searching the optimal fitting plane was presented.The three-dimensional point cloud data obtained by light detection and ranging (LIDAR) were addressed with sparse representation.Then the data were clustered and segmented according to the sparse coefficients.So the subspaces were determined and the data points in subspace were used to fit plane.The optimal plane can be obtained by random search and the angle between the normal vectors can be got by calculation.The angle obtained equals the slope angle in value.So far,the slope angle estimation was completed.The experiments show that this method can estimate the slope angle very accurately.Compared with the common estimation method,this algorithm has low relative error.

关键词

计量学/坡度估计/三维点云/稀疏表示/数据聚类

Key words

metrology/slope estimation/three-dimensional point cloud/sparse representation/data clustering

分类

通用工业技术

引用本文复制引用

李海波,曹云峰,丁萌,庄丽葵..基于三维点云聚类的坡度估计方法[J].计量学报,2018,39(3):304-309,6.

基金项目

国家自然科学基金(61673211) (61673211)

航天科学基金(2014320003010432) (2014320003010432)

江苏省研究生培养创新工程(KYLX_0282) (KYLX_0282)

计量学报

OA北大核心CSCDCSTPCD

1000-1158

访问量0
|
下载量0
段落导航相关论文