| 注册
首页|期刊导航|集美大学学报(自然科学版)|空间分数阶扩散方程的多项式点插值配置法

空间分数阶扩散方程的多项式点插值配置法

危国华

集美大学学报(自然科学版)2018,Vol.23Issue(2):150-155,6.
集美大学学报(自然科学版)2018,Vol.23Issue(2):150-155,6.

空间分数阶扩散方程的多项式点插值配置法

Polynomial Point Interpolation Collocation Method for Spatial Fractional Diffusion Equation

危国华1

作者信息

  • 1. 福建广播电视大学三明分校,福建 三明365000
  • 折叠

摘要

Abstract

In this paper, we make the first attempt to apply polynomial point interpolation collocation method for solving spatial fractional differential equation with two-side derivative. Firstly, numerical approxi-mation scheme was obtained by polynomial point interpolation. Then numerical examples, discretizing space variable with both regular nodes and irregular nodes, had good approximation results, which testified the va-lidity of the proposed numerical method.

关键词

空间分数阶微分方程/多项式基/配置法/Riemann-Liouville分数阶导数/形函数

Key words

spatial fractional differential equation/polynomial/collocation method/Riemann-Liouville fractional derivative/shape function

分类

数理科学

引用本文复制引用

危国华..空间分数阶扩散方程的多项式点插值配置法[J].集美大学学报(自然科学版),2018,23(2):150-155,6.

集美大学学报(自然科学版)

1007-7405

访问量0
|
下载量0
段落导航相关论文