| 注册
首页|期刊导航|计算机工程与科学|基于PSO优化GRNN的语音转换方法

基于PSO优化GRNN的语音转换方法

王民 杨秀峰 要趁红

计算机工程与科学2018,Vol.40Issue(4):752-756,5.
计算机工程与科学2018,Vol.40Issue(4):752-756,5.DOI:10.3969/j.issn.1007-130X.2018.04.024

基于PSO优化GRNN的语音转换方法

Voice conversion based on optimizing GRNN by PSO

王民 1杨秀峰 1要趁红1

作者信息

  • 1. 西安建筑科技大学信息与控制工程学院,陕西西安710055
  • 折叠

摘要

Abstract

The paper proposes a new voice conversion method based on using Particle Swarm Optimization (PSO)to optimize General Regression Neural Network (GRNN).Firstly,the method utilizes the characteristic parameters of the training speaker's vocal tract and source excitation to train two GRNNs,and then obtains the structure parameters of GRNNs.Secondly,in order to reduce the adverse impact of artificial man-induced factors on conversion results,PSO is used to optimize the parameters of the GRNN model.Finally,the pitch contour and the energy profile of prosodic features are linearly converted,thus making the converted voice contain more personalized feature information of source speaker.Experimental results show that,compared with the radial basis function neural network(RBF) and the GRNN based voice conversion methods,our method improves the naturalness and likelihood of the converted voices and evidently decreases the spectral distortion rate,so the converted voices are more closed to the target voices.

关键词

语音转换/广义回归神经网络模型/粒子群优化

Key words

voice conversion/general regression neural network model/particle swarm optimization

分类

信息技术与安全科学

引用本文复制引用

王民,杨秀峰,要趁红..基于PSO优化GRNN的语音转换方法[J].计算机工程与科学,2018,40(4):752-756,5.

基金项目

住房城乡建设部科学技术项目(2016-R2-045) (2016-R2-045)

西安市碑林区2014年科技计划(GX1412) (GX1412)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文