| 注册
首页|期刊导航|计算机工程与应用|基于多分段改进PCC的协同过滤算法

基于多分段改进PCC的协同过滤算法

张沪寅 段维 叶刚

计算机工程与应用2018,Vol.54Issue(9):116-120,5.
计算机工程与应用2018,Vol.54Issue(9):116-120,5.DOI:10.3778/j.issn.1002-8331.1612-0157

基于多分段改进PCC的协同过滤算法

Collaborative filtering algorithm based on improved multi-segmented PCC

张沪寅 1段维 1叶刚1

作者信息

  • 1. 武汉大学 计算机学院,武汉430072
  • 折叠

摘要

Abstract

With the rapid development of the Internet,a large variety of information has exploded,and resulting in infor-mation overload. Now, by analyzing a large number of available information, recommender systems can help users find things they are interested.And collaborative filtering is the most widely used approach in the recommendation systems. However,its accuracy of recommendation is still needed to be improved.In this paper,a novel effective collaborative filtering algorithm based on segmented and improved PCC is proposed to improve the accuracy of the recommendation system.The number of co-items and the PCC threshold is used to calculate and improve the results of the PCC in this method.Finally,the experimental results show that the proposed method is better than other traditional methods.

关键词

推荐系统/协同过滤/相似度/分段

Key words

recommender system/collaborative filtering/similarity/segmentation

分类

信息技术与安全科学

引用本文复制引用

张沪寅,段维,叶刚..基于多分段改进PCC的协同过滤算法[J].计算机工程与应用,2018,54(9):116-120,5.

基金项目

国家自然科学基金(No.61540059) (No.61540059)

深圳市科技计划项目(No.JCYJ20140603152449639). (No.JCYJ20140603152449639)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文