| 注册
首页|期刊导航|计算机工程与应用|一种新的自适应惯性权重混沌PSO算法

一种新的自适应惯性权重混沌PSO算法

李龙澍 张效见

计算机工程与应用2018,Vol.54Issue(9):139-144,6.
计算机工程与应用2018,Vol.54Issue(9):139-144,6.DOI:10.3778/j.issn.1002-8331.1612-0093

一种新的自适应惯性权重混沌PSO算法

New chaos particle swarm optimization based on adaptive inertia weight

李龙澍 1张效见2

作者信息

  • 1. 安徽大学 计算智能与信号处理教育部重点实验室,合肥230039
  • 2. 安徽大学 计算机科学与技术学院,合肥230601
  • 折叠

摘要

Abstract

Particle Swarm Optimization(PSO)is easy to fall into the local optimal value.According to this disadvantage, a New Chaos Particle Swarm Optimization based on Adaptive Inertia Weight(CPSO-NAIW)is proposed.Firstly,the new inertia weight adaptive method is used to make a balance between the global and local search of the particles.It can reduce the probability of particles trap in local optimal.Then,when the algorithm falls into local optimal value,the strategy of chaos optimization is introduced to adjust the position of the population's extreme value so that the particles can search the new neighorhood and path.The probability of getting rid of the local extremum is increaseed.Finally,the experimental results show that the CPSO-NAIW algorithm can avoid the local optimal and improve the performance of the algorithm effectively.

关键词

粒子群/自适应惯性权重/混沌/局部极值

Key words

particle swarm optimization/adaptive inertia weight/chaos/local extreme value

分类

信息技术与安全科学

引用本文复制引用

李龙澍,张效见..一种新的自适应惯性权重混沌PSO算法[J].计算机工程与应用,2018,54(9):139-144,6.

基金项目

青年科学基金项目(No.61402005). (No.61402005)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文