| 注册
首页|期刊导航|计算机工程与应用|改进的核相关滤波跟踪算法

改进的核相关滤波跟踪算法

孙健 向伟 谭舒昆 刘云鹏

计算机工程与应用2018,Vol.54Issue(9):178-182,5.
计算机工程与应用2018,Vol.54Issue(9):178-182,5.DOI:10.3778/j.issn.1002-8331.1612-0316

改进的核相关滤波跟踪算法

Improved kernelized correlation filter tracking

孙健 1向伟 2谭舒昆 1刘云鹏1

作者信息

  • 1. 中国科学院 沈阳自动化研究所,沈阳110016
  • 2. 中国科学院大学,北京100049
  • 折叠

摘要

Abstract

An improved kernel correlation filtering target tracking algorithm is proposed by Kernelized Correlation Filtering (KCF)tracking algorithm,which can not solve the problem of scale change and out-of-view in target tracking.Firstly,a scale filter is added to improve the target scale change based on training translation filter. In order to solve out-of-view problem, the occlusion processing mechanism is used.When the target is not completely occluded, the SVM is used to train the samples,and the re-detection classifier is adopted to detect.Experimental results show that the tracking accuracy of this method is obviously improved in comparison with other excellent tracking algorithms.

关键词

核相关滤波/目标丢失/尺度变化/遮挡/支持向量机

Key words

kernel correlation filter/out-of-view/scale change/occlusion/support vector machine

分类

信息技术与安全科学

引用本文复制引用

孙健,向伟,谭舒昆,刘云鹏..改进的核相关滤波跟踪算法[J].计算机工程与应用,2018,54(9):178-182,5.

基金项目

中国科学院国防科技创新重点基金(No.CXJJ-14-Z65). (No.CXJJ-14-Z65)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文