| 注册
首页|期刊导航|计算机科学与探索|改进的卷积神经网络在行人检测中的应用

改进的卷积神经网络在行人检测中的应用

谢林江 季桂树 彭清 罗恩韬

计算机科学与探索2018,Vol.12Issue(5):708-718,11.
计算机科学与探索2018,Vol.12Issue(5):708-718,11.DOI:10.3778/j.issn.1673-9418.1708030

改进的卷积神经网络在行人检测中的应用

Application of Preprocessing Convolutional Neural Network in Pedestrian Detection

谢林江 1季桂树 1彭清 1罗恩韬1

作者信息

  • 1. 中南大学 信息科学与工程学院,长沙410083
  • 折叠

摘要

Abstract

In order to solve the problems of large computational complexity,complicated pedestrian feature extrac-tion and complex background influence,this paper proposes a modified convolutional neural network(CNN)model. Based on the traditional CNN algorithm,a selective attention layer is added to this model to simulate the selective attention feature of human's eyes,which is able to filter the complex background and highlight the characteristics of pedestrians. LBP(local binary pattern) texture processing and gradient processing are used to train the selective attention layer,and the optimal model is obtained by comparing the training results.Experiments are conducted on INRIA, NICTA and Daimler pedestrian datasets respectively. The results show that the accuracy of the proposed model in the pedestrian detection is better than that of the traditional CNN, HOG+SVM, Haar+SVM and PCA+SVM,and the accuracy of the INRIA,NICTA and Daimler pedestrian datasets is 96.14%,96.64% and 99.78% respectively.

关键词

行人检测/深度学习/卷积神经网络/选择性注意

Key words

pedestrian detection/deep learning/convolutional neural network/selective attention

分类

信息技术与安全科学

引用本文复制引用

谢林江,季桂树,彭清,罗恩韬..改进的卷积神经网络在行人检测中的应用[J].计算机科学与探索,2018,12(5):708-718,11.

基金项目

The National Natural Science Foundation of China under Grant Nos.61632009,61472451,61402161(国家自然科学基金). (国家自然科学基金)

计算机科学与探索

OA北大核心CSCDCSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文