| 注册
首页|期刊导航|太原理工大学学报|最小生成树脑网络分析及自闭症分类研究

最小生成树脑网络分析及自闭症分类研究

程超 党伟超 白尚旺 潘理虎 刘春霞

太原理工大学学报2018,Vol.49Issue(3):454-461,8.
太原理工大学学报2018,Vol.49Issue(3):454-461,8.DOI:10.16355/j.cnki.issn1007-9432tyut.2018.03.014

最小生成树脑网络分析及自闭症分类研究

Brain Network Analysis Based on Minimum Spanning Tree and Classification in Autism

程超 1党伟超 1白尚旺 1潘理虎 1刘春霞2

作者信息

  • 1. 太原科技大学 计算机科学与技术学院,太原030024
  • 2. 中国科学院 地理科学与技术学院,北京100101
  • 折叠

摘要

Abstract

There'is a huge difference in the clinical characterization of autism in different ages, which is difficult to be detected on the basis of imaging indicators.In order to solve this problem, this study employed the minimum spanning tree analysis method based on the static state func-tional brain network.Node attributes,such as degree,betweenness centrality and eccentricity, were used to analyze the differences between different age groups (children-adolescents,adoles-cents-adults).At the same time,with the significant regions as the feature,a the multi-parame-ter optimization framework was proposed and a model with high diagnostic accuracy of autism was constructed.The results show that significant differences existed between the two groups. The classification accuracy was 80.38% and 81.88% respectively.This research provides an im-portant method and a new idea for imaging analysis and auxiliary diagnosis of austism patients with different age.

关键词

最小生成树/复杂网络/自闭症/分类

Key words

minimum spanning tree(MST)/complex network/autism spectrum disorder (ASD)/classification

分类

信息技术与安全科学

引用本文复制引用

程超,党伟超,白尚旺,潘理虎,刘春霞..最小生成树脑网络分析及自闭症分类研究[J].太原理工大学学报,2018,49(3):454-461,8.

基金项目

山西省中科院科技合作项目(20141101001) (20141101001)

"十二五"山西省科技重大专项项目(20121101001) (20121101001)

山西省重点研发计划(一般)工业项目(201703D121042-1) (一般)

山西省社会发展科技项目(20140313020-1) (20140313020-1)

太原理工大学学报

OA北大核心CSTPCD

1007-9432

访问量0
|
下载量0
段落导航相关论文