| 注册
首页|期刊导航|北京交通大学学报|自适应无迹卡尔曼滤波动力电池的SOC估计

自适应无迹卡尔曼滤波动力电池的SOC估计

谢永东 何志刚 陈栋 周洪剑

北京交通大学学报2018,Vol.42Issue(2):129-137,9.
北京交通大学学报2018,Vol.42Issue(2):129-137,9.DOI:10.11860/j.issn.1673-0291.2018.02.018

自适应无迹卡尔曼滤波动力电池的SOC估计

SOC estimation of power battery based on AUKF

谢永东 1何志刚 2陈栋 2周洪剑2

作者信息

  • 1. 江苏职业联合技术学院苏州建设交通分院,江苏苏州215000
  • 2. 江苏大学汽车与交通工程学院,江苏镇江212013
  • 折叠

摘要

Abstract

The UKF method can be used to estimate the SOC of power battery,however,the uncertainty of the system noise may cause that the algorithm does not converge,and the estimation performance of the algorithm is affected by the accuracy of the model.An AUKF is used to estimate the dynamic SOC of an electric vehicle.At first,an equivalent circuit model appropriate for SOC estimation is built and the corresponding parameters of the battery model are identified.The AUKF is used in this model for online estimation of battery SOC in unknown noise environment.Experimental results show that the estimation error of UKF algorithm is beating between-0.04~0.06,while the estimation error of AUKF algorithm is kept within 0.05 and the SOC estimation error is corrected in real time.

关键词

电动汽车/动力电池/SOC估计/自适应无迹卡尔曼滤波

Key words

electric vehicle/power battery/SOC estimation/adaptive unscented Kalman filter

分类

信息技术与安全科学

引用本文复制引用

谢永东,何志刚,陈栋,周洪剑..自适应无迹卡尔曼滤波动力电池的SOC估计[J].北京交通大学学报,2018,42(2):129-137,9.

基金项目

国家科技支撑计划项目(2015BAG07B00)National Key Technology Research and Development Program(2015BAG07B00) (2015BAG07B00)

北京交通大学学报

OA北大核心CSCDCSTPCD

1673-0291

访问量0
|
下载量0
段落导航相关论文