| 注册
首页|期刊导航|测控技术|基于自适应蚁群的FCM聚类优化算法研究

基于自适应蚁群的FCM聚类优化算法研究

谈玲珑 汪青 李长凯

测控技术2018,Vol.37Issue(5):46-50,5.
测控技术2018,Vol.37Issue(5):46-50,5.

基于自适应蚁群的FCM聚类优化算法研究

Optimization of Fuzzy C-Means Clustering Based on Adaptive Ant Colony Algorithm

谈玲珑 1汪青 1李长凯1

作者信息

  • 1. 安徽新华学院电子通信工程学院,安徽合肥230088
  • 折叠

摘要

Abstract

The fuzzy C-means (FCM) clustering algorithm needs to artificially set the number of clusters when initializing the algorithm,and randomly initializes the clustering center,which makes the FCM algorithm easily fall into the local optimal solution.The optimized FCM clustering algorithm was used to solve the above problems.The adaptive ant colony algorithm created the initial clustering center and the number of the centers,the data were used as the input of FCM clustering algorithm.The FCM algorithm and the optimized FCM algorithm were evaluated by clustering validity evaluation method of entropy and data geometric structure.Experimental results and analysis show the effectiveness of the method.

关键词

模糊聚类/蚁群算法/优化模糊聚类/有效性指标

Key words

FCM/ant colony algorithm/optimized FCM clustering algorithm/validation index

分类

信息技术与安全科学

引用本文复制引用

谈玲珑,汪青,李长凯..基于自适应蚁群的FCM聚类优化算法研究[J].测控技术,2018,37(5):46-50,5.

基金项目

安徽新华学院校级科研项目(2017zr003) (2017zr003)

高校优秀青年骨干人才国内访学研修项目(gxgnfx2018070) (gxgnfx2018070)

测控技术

OACSTPCD

1000-8829

访问量0
|
下载量0
段落导航相关论文