| 注册
首页|期刊导航|电子学报|基于局部空间变稀疏约束的多核学习方法

基于局部空间变稀疏约束的多核学习方法

王庆超 付光远 汪洪桥 辜弘扬 王超

电子学报2018,Vol.46Issue(4):930-937,8.
电子学报2018,Vol.46Issue(4):930-937,8.DOI:10.3969/j.issn.0372-2112.2018.04.022

基于局部空间变稀疏约束的多核学习方法

Local Variable Sparsity Based Multiple Kernel Learning Algorithm

王庆超 1付光远 1汪洪桥 1辜弘扬 1王超1

作者信息

  • 1. 火箭军工程大学信息工程系,陕西西安710025
  • 折叠

摘要

Abstract

Local multiple kernel learning method could learn a specific combination kernel function for various samples according to the local space characteristics,therefore it has better discriminant ability.In this paper,we propose a local variable sparsity based multiple kernel learning method.In our method,the samples are divided into a few groups with a soft grouping method and the sparsity of kernel weights in various local spaces is determined by the similarity of kernels.We use an alternative optimization method to solve this problem.The experiment on synthetic dataset indicates that our method has a strong advantage in discriminative feature learning and against noise.Finally we apply our method into image scene classification and the accuracy is improved obviously.

关键词

多核学习/支持向量机/局部学习/变稀疏约束

Key words

multiple kernel learning/support vector machine/local learning/variable sparsity constraint

分类

信息技术与安全科学

引用本文复制引用

王庆超,付光远,汪洪桥,辜弘扬,王超..基于局部空间变稀疏约束的多核学习方法[J].电子学报,2018,46(4):930-937,8.

基金项目

国家自然科学基金(No.61202332,No.61403397) (No.61202332,No.61403397)

陕西省自然科学基金(No.2015JM6313) (No.2015JM6313)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文