| 注册
首页|期刊导航|大连理工大学学报|基于改进粒子群优化BP_Adaboost神经网络的PM2.5浓度预测

基于改进粒子群优化BP_Adaboost神经网络的PM2.5浓度预测

李晓理 梅建想 张山

大连理工大学学报2018,Vol.58Issue(3):316-323,8.
大连理工大学学报2018,Vol.58Issue(3):316-323,8.DOI:10.7511/dllgxb201803013

基于改进粒子群优化BP_Adaboost神经网络的PM2.5浓度预测

PM2.5concentration prediction using BP_Adaboost neural network based on modified particle swarm optimization

李晓理 1梅建想 2张山3

作者信息

  • 1. 北京工业大学 信息学部,北京 100124
  • 2. 计算智能与智能系统北京市重点实验室,北京 100124
  • 3. 数字社区教育部工程研究中心,北京 100124
  • 折叠

摘要

Abstract

In order to improve the prediction accuracy of the atmospheric pollutants concentration, the gray correlation analysis is used to select the main factors affecting the PM2.5concentration in the atmosphere.Regarding them as the input variables,a model based on BP_Adaboost neural network is proposed to predict the PM2.5concentration.The modified particle swarm optimization (MPSO) algorithm is applied to choose the weight and threshold of BP_Adaboost neural network,which can availably avoid falling into local optimal solution.According to the concentration of air pollutants and meteorological condition,the data between November 1,2014 to November 25,2014 and July 7,2017 to August 6,2017,which are monitored every hour by the Wanliu station of Haidian distinct and Beijing University of Technology point of Chaoyang distinct in Beijing,are used as the experiment obj ect.The simulation results show that the PM2.5concentration prediction performance of MPSO-BP_Adaboost neural network is better than that of BP_Adaboost,BP and generalized regression neural network.

关键词

灰色关联分析/BP_Adaboost神经网络/PM2.5浓度预测模型/改进粒子群算法

Key words

gray correlation analysis/BP_Adaboost neural network/PM2.5concentration prediction model/modified particle swarm optimization (MPSO)algorithm

分类

资源环境

引用本文复制引用

李晓理,梅建想,张山..基于改进粒子群优化BP_Adaboost神经网络的PM2.5浓度预测[J].大连理工大学学报,2018,58(3):316-323,8.

基金项目

国家自然科学基金资助项目(61473034,61673053) (61473034,61673053)

北京科技新星计划交叉学科合作项目(Z161100004916041). (Z161100004916041)

大连理工大学学报

OA北大核心CSCDCSTPCD

1000-8608

访问量0
|
下载量0
段落导航相关论文