| 注册
首页|期刊导航|计算机工程与科学|一种云环境下基于混合型BBO的任务调度算法

一种云环境下基于混合型BBO的任务调度算法

童钊 陈洪剑 陈明 梅晶 刘宏

计算机工程与科学2018,Vol.40Issue(5):765-772,8.
计算机工程与科学2018,Vol.40Issue(5):765-772,8.DOI:10.3969/j.issn.1007-130X.2018.05.001

一种云环境下基于混合型BBO的任务调度算法

A hybrid biogeography-based optimization algorithm for task scheduling in cloud computing

童钊 1陈洪剑 2陈明 1梅晶 2刘宏1

作者信息

  • 1. 湖南师范大学信息科学与工程学院,湖南长沙 410012
  • 2. 高性能计算与随机信息处理省部共建教育部重点实验室,湖南长沙 410012
  • 折叠

摘要

Abstract

Task scheduling plays a critical role in cloud computing and is a key factor affecting the performance of cloud computing.It has been proved to be an NP problem.Heuristic algorithm is one of the most effective methods to solve this problem.This paper focuses on the Biogeography-Based Optimization (BBO) algorithm,which serves in recent years as a new heuristic algorithm.Because the BBO algorithm converges slowly in the solution process,by combining Particle Swarm Optimization (PSO) algorithm,we propose a novel task scheduling algorithm,named Hybrid Migrating Biogeography-Based Optimization (HMBBO).A comparison experiment using Makespan as the objective function is performed on the Cloudsim cloud simulation platform.The experiment results show that,compared with several classical heuristic algorithms,HMBBO has the advantages of strong optimization ability,fast convergence speed and high-quality solution,and provides a new way to solving the task scheduling problem in cloud computing environment.

关键词

云计算/任务调度/BBO/Makespan

Key words

cloud computing/task scheduling/BBO/Makespan

分类

信息技术与安全科学

引用本文复制引用

童钊,陈洪剑,陈明,梅晶,刘宏..一种云环境下基于混合型BBO的任务调度算法[J].计算机工程与科学,2018,40(5):765-772,8.

基金项目

国家自然科学基金(61502165) (61502165)

湖南省教育厅一般项目(17C0959) (17C0959)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量1
|
下载量0
段落导航相关论文