| 注册
首页|期刊导航|计算机工程与科学|一种基于遗传算法的BLAS库优化方法

一种基于遗传算法的BLAS库优化方法

孙成国 兰静 姜浩

计算机工程与科学2018,Vol.40Issue(5):798-804,7.
计算机工程与科学2018,Vol.40Issue(5):798-804,7.DOI:10.3969/j.issn.1007-130X.2018.05.006

一种基于遗传算法的BLAS库优化方法

A BLAS library optimization method based on genetic algorithm

孙成国 1兰静 2姜浩1

作者信息

  • 1. 国防科技大学计算机学院,湖南 长沙 410073
  • 2. 重庆工商大学融智学院,重庆 404100
  • 折叠

摘要

Abstract

Based on OpenBLAS and BLIS,the two open source linear algebra libraries,the performance optimization of dense matrix multiplication (GEMM) operation is studied.Aiming at how to select the key block parameters of GEMM,a performance optimization model is established.An improved genetic algorithm is used to solve the above performance optimization model.The performance value of the GEMM corresponding to a certain parameter combination (individual) is taken as the fitness of the individual.The optimal combination of block parameters is found through continuous iterative selection,crossover and mutation operations in order to make the performance of GEMM optimal.Numerical experiments show that the performance of GEMM based on genetic algorithm is better than the performance under the initial block parameters,and hence the optimization is achieved.

关键词

BLAS/GEMM/遗传算法/自动调优

Key words

BLAS/GEMM/genetic algorithm/autotuning

分类

信息技术与安全科学

引用本文复制引用

孙成国,兰静,姜浩..一种基于遗传算法的BLAS库优化方法[J].计算机工程与科学,2018,40(5):798-804,7.

基金项目

国家863项目(2012AA01A301) (2012AA01A301)

国家自然科学基金(61402495,61303189,61602166,61170049,61402496) (61402495,61303189,61602166,61170049,61402496)

重庆市教育科学规划课题重点项目(2015-GX-036) (2015-GX-036)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文