| 注册
首页|期刊导航|计算机工程与应用|深度学习的研究进展与发展

深度学习的研究进展与发展

史加荣 马媛媛

计算机工程与应用2018,Vol.54Issue(10):1-9,10,10.
计算机工程与应用2018,Vol.54Issue(10):1-9,10,10.DOI:10.3778/j.issn.1002-8331.1712-0418

深度学习的研究进展与发展

Research progress and development of deep learning

史加荣 1马媛媛2

作者信息

  • 1. 西安建筑科技大学 建筑学院,西安710055
  • 2. 省部共建西部绿色建筑国家重点实验室,西安710055
  • 折叠

摘要

Abstract

Deep learning is a broader class of machine learning method based on data representation.Its emergence has not only promoted the development of machine learning,but also accelerated the innovation of artificial intelligence.This paper discusses and compares several typical models of deep learning.It first investigates restricted Boltzmann machine, deep belief network and auto-encoder,and explores their structure,principle,advantages and disadvantages of these unsu-pervised learning models in detail.Secondly,it discusses several supervised learning models including convolutional neu-ral network, recurrent neural network and deep stacked network.And it also evaluates and analyzes the model structure and working principle.Then it makes a contrastive analysis of typical deep learning models and performs comparative experiments.Deep belief network and convolutional neural network are applied to the handwriting digits recognition task and experimental results show that deep learning models have better recognition performance than traditional neural net-work.Finally,it discusses the developments and challenges of deep learning in the future.

关键词

深度学习/卷积神经网络/深度置信网络/自编码器/循环神经网络/深度堆叠网络

Key words

deep learning/convolutional neural network/deep belief network/auto-encoder/recurrent neural network/deep stacked network

分类

信息技术与安全科学

引用本文复制引用

史加荣,马媛媛..深度学习的研究进展与发展[J].计算机工程与应用,2018,54(10):1-9,10,10.

基金项目

中国博士后科学基金(No.2017M613087) (No.2017M613087)

国家自然科学基金青年科学基金(No.61403298). (No.61403298)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文