| 注册
首页|期刊导航|中国石油大学学报(自然科学版)|基于人工神经网络的连续油管疲劳寿命预测

基于人工神经网络的连续油管疲劳寿命预测

于桂杰 赵崇 迟建伟 张佳兴

中国石油大学学报(自然科学版)2018,Vol.42Issue(3):131-136,6.
中国石油大学学报(自然科学版)2018,Vol.42Issue(3):131-136,6.DOI:10.3969/j.issn.1673-5005.2018.03.016

基于人工神经网络的连续油管疲劳寿命预测

Fatigue life prediction of coiled tubings based on artificial neural network

于桂杰 1赵崇 1迟建伟 1张佳兴1

作者信息

  • 1. 中国石油大学(华东)储运与建筑工程学院,山东青岛266580
  • 折叠

摘要

Abstract

In the study,we use the artificial neural network theory to predict the low cycle fatigue life of coiled tubings with surface defects. Based on the self-organizing feature map(SOFM) and radial basis function(RBF) neural networks,and con-sidering the effect of coiled tubing surface imperfections,a hybrid network model is built for predicting the life of coiled tub-ings. Using the self-organizing clustering ability of the SOFM neural network,in the model we classify the sample data,and the classification centers and corresponding weight vectors are transmitted to the RBF neural network,as the centers of RBF activa-tion function,and then we can predict the working lives of coiled tubings by the nonlinear approximation ability of RBF neural network. The result shows that the hybrid network model is superior to BP neural network in accuracy and stability.

关键词

连续油管/疲劳寿命/表面缺陷/人工神经网络

Key words

coiled tubing/fatigue life/surface defect/artificial neural network

分类

能源科技

引用本文复制引用

于桂杰,赵崇,迟建伟,张佳兴..基于人工神经网络的连续油管疲劳寿命预测[J].中国石油大学学报(自然科学版),2018,42(3):131-136,6.

基金项目

国家科技重大专项(2015ZX05072004) (2015ZX05072004)

中国石油大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1673-5005

访问量0
|
下载量0
段落导航相关论文