| 注册
首页|期刊导航|应用数学和力学|基于分位点的广义Pareto分布函数最小二乘拟合方法

基于分位点的广义Pareto分布函数最小二乘拟合方法

赵刚 李刚

应用数学和力学2018,Vol.39Issue(4):415-423,9.
应用数学和力学2018,Vol.39Issue(4):415-423,9.DOI:10.21656/1000-0887.380196

基于分位点的广义Pareto分布函数最小二乘拟合方法

A Least-Squares Fitting Method for Generalized Pareto Distributions Based on Quantiles

赵刚 1李刚2

作者信息

  • 1. 大连理工大学工程力学系
  • 2. 工业装备结构分析国家重点实验室(大连理工大学),辽宁大连116024
  • 折叠

摘要

Abstract

The generalized Pareto distribution (GPD) is a classical asymptotically motivated model for excesses above a high threshold based on the extreme value theory,which is useful for the high reliability index estimation.In the GPD there are 2 unknown parameters which could be estimated with the least-squares fitting method and the maximum likelihood method.Both methods need all the tail samples of a distribution in previous studies.However,for the GPD estimation,the better accuracy would lead to a much higher computational cost.So a least-squares fitting method based on the quantiles was proposed to obtain the unknown parameters in the GPD.The 2-stage-updating method for the Kriging model was also given to calculate the quantiles.Compared with the GPD based on the maximum likelihood method and the Monte-Carlo method,the 2-stage-updating method for the Kriging model helps find the specified quantiles accurately and efficiently,and the least-squares fitting method based on the quantiles also performs well.

关键词

广义Pareto分布/最小二乘拟合/分位点/Kriging模型

Key words

generalized Pareto distribution/least-squares fitting method/quantile/Kriging model

分类

数理科学

引用本文复制引用

赵刚,李刚..基于分位点的广义Pareto分布函数最小二乘拟合方法[J].应用数学和力学,2018,39(4):415-423,9.

基金项目

The National Basic Research Program of China (973 Program)(2016CB046506)国家重点基础研究发展计划(973计划)(2016CB046506) (973 Program)

应用数学和力学

OA北大核心CSCDCSTPCD

1000-0887

访问量1
|
下载量0
段落导航相关论文