| 注册
首页|期刊导航|自动化学报|基于生成对抗网络的低秩图像生成方法

基于生成对抗网络的低秩图像生成方法

赵树阳 李建武

自动化学报2018,Vol.44Issue(5):829-839,11.
自动化学报2018,Vol.44Issue(5):829-839,11.DOI:10.16383/j.aas.2018.c170473

基于生成对抗网络的低秩图像生成方法

Generative Adversarial Network for Generating Low-rank Images

赵树阳 1李建武1

作者信息

  • 1. 北京理工大学计算机学院智能信息技术北京市重点实验室 北京100 081
  • 折叠

摘要

Abstract

Low-rank texture structure is an important geometric structure in image processing. By extracting low-rank textures,images with various interferences can be rectified effectively. To solve the problem of low rank image correction with various interferences,this paper proposes to use the generation framework to alleviate poor correction results on the region without obvious low-rank properties. And a low-rank texture generative adversarial network(LR-GAN)is proposed using an unsupervised image-to-image network. Firstly, by using transform invariant low-rank textures (TILT) to guide the discriminator in the LR-GAN, the whole network can not only achieve the effect of unsupervised learning but also learn a structured low rank representation on both generation network and discrimination network. Secondly,considering that the low-rank constraint is difficult to optimize (NP-hard problem) in the loss function, we introduce a layer of the low-rank gradient filters to approach the optimal low-rank solution after many iterations guided by TILT.We evaluate the LR-GAN network on three public datasets: MNIST, SVHN and FG-NET, and verify the quality of generative low-rank images by using a classification network. Experimental results demonstrate that the proposed method is effective in both generative quality and recognition accuracy.

关键词

生成对抗网络/低秩纹理生成对抗网络/结构化低秩表示/低秩约束

Key words

Generative adversarial network(GAN)/low-rank texture generative adversarial network(LR-GAN)/struc-tured low-rank representation/low-rank constraint

引用本文复制引用

赵树阳,李建武..基于生成对抗网络的低秩图像生成方法[J].自动化学报,2018,44(5):829-839,11.

基金项目

国家自然科学基金(61271374)资助 Supported by National Natural Science Foundation of China(61271374) (61271374)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文