中山大学学报(自然科学版)2018,Vol.57Issue(3):85-88,4.DOI:10.13471/j.cnki.acta.snus.2018.03.012
交错群A119上的5度2-传递非正规Cayley图
A 2-transitive pentavalent nonnormal Cayley graph on the alternating group A119
摘要
Abstract
A Cayley graph Γ=Cay(G,S)is said to be normal if G is normal in Aut(Γ).The concept of normal Cayley graphs was first proposed by XU Ming Yao and it plays an important role in determining the full automorphism groups of Cayley graphs.The Cayley graphs on finite nonabelian simple groups are received most attention in the literature.However,examples of connected arc-transitive non-normal Cay-ley graphs of small valency on nonabelian simple groups are very rare.An example of a nonnormal 2-tran-sitive pentavalent Cayley graph on the alternating group A119is constructed and it is showed that the full automorphism group of this graph is isomorphic to the alternating group A120.关键词
对称图/单群/自同构群/非正规Cayley图Key words
symmetric graph/simple group/automorphism group/nonnormal cayley graph分类
数学引用本文复制引用
凌波..交错群A119上的5度2-传递非正规Cayley图[J].中山大学学报(自然科学版),2018,57(3):85-88,4.基金项目
国家自然科学基金(11701503,11761079,11361006) (11701503,11761079,11361006)
云南省教育厅科学研究基金(2017ZZX086) (2017ZZX086)