| 注册
首页|期刊导航|安徽农业科学|基于深度学习网络的烟叶质量识别

基于深度学习网络的烟叶质量识别

韩东伟 王小明 王新峰

安徽农业科学2018,Vol.46Issue(10):185-188,4.
安徽农业科学2018,Vol.46Issue(10):185-188,4.

基于深度学习网络的烟叶质量识别

Identification of Tobacco Quality Based on Deep Learning Network

韩东伟 1王小明 1王新峰1

作者信息

  • 1. 河南中烟工业有限责任公司许昌卷烟厂,河南许昌461000
  • 折叠

摘要

Abstract

The main basis for the identification of tobacco leaf quality and ripening degree was summarized.The convolution neural network reconstructed by the automatic encoder pre-training method was used to construct the tobacco leaf quality identification model.The experimental data were used to verify the experimental results and the results showed that the reconstructed depth training self-encoder achieved 99.92% accuracy in classification performance.

关键词

深度学习/智能识别/烟叶质量识别

Key words

Deep learning/Intelligent identification/Tobacco quality identification

分类

农业科技

引用本文复制引用

韩东伟,王小明,王新峰..基于深度学习网络的烟叶质量识别[J].安徽农业科学,2018,46(10):185-188,4.

安徽农业科学

0517-6611

访问量0
|
下载量0
段落导航相关论文