| 注册
首页|期刊导航|计算机与数字工程|基于MAS的时序数据集成管理模型设计

基于MAS的时序数据集成管理模型设计

李春生 张勇 张可佳 宋佳

计算机与数字工程2018,Vol.46Issue(5):928-932,5.
计算机与数字工程2018,Vol.46Issue(5):928-932,5.DOI:10.3969/j.issn.1672-9722.2018.05.016

基于MAS的时序数据集成管理模型设计

Design of Time Series Data Integration Management Model Based on MAS

李春生 1张勇 1张可佳 1宋佳1

作者信息

  • 1. 东北石油大学计算机与信息技术学院 大庆163318
  • 折叠

摘要

Abstract

In the process of pattern mining applied to industrial production decision-making,in order to reduce the complexity of timing data and improve the efficiency of data preprocessing,based on the time series data model(SC model),combining the business management process and working characteristics,the case sample structure(SCSM structure)is designed. Using SCSM structure,MAS technology is introduced,from the Agent monomer structure.Based on time-series data body MAS framework,man-agement strategy and other aspects of in-depth study,by learning from Center-Round management mode,the design of time series data integration management model(DM-MAS model)based on MAS is completed.So as to solve the problem of large amount of computation of time series data,low efficiency of data conversion and poor data accessibility,the purpose of improving system ro-bustness and data processing is also achieved.Finally,combined with the oil field production process,DM-MAS model is used to achieve the oil field production operation data integration management system design.At the same time,the feasibility of the model is verified by instance test and comparative analysis.

关键词

关键字Agent/数据集成/时序数据/MAS框架

Key words

Agent/data integration/timing data/MAS framework

分类

信息技术与安全科学

引用本文复制引用

李春生,张勇,张可佳,宋佳..基于MAS的时序数据集成管理模型设计[J].计算机与数字工程,2018,46(5):928-932,5.

基金项目

黑龙江省自然科学基金面上项目"基于多核学习的特高水期综合调整措施效果预测2015.7-2018.7"(编号:F2015020) (编号:F2015020)

省教育科研规划重点课题(编号:GJB1215013)资助. (编号:GJB1215013)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文