四川大学学报(自然科学版)2018,Vol.55Issue(3):452-456,5.DOI:10.3969/j.issn.0490-6756.2018.03.006
非线性二阶周期边值问题正解的全局结构
Global structure of positive solutions for a nonlinear second-order periodic boundary value problem
摘要
Abstract
In this paper ,we study the global structure of positive solutions for second-order periodic boundary value problem {u″(t) - k2 u + λa(t) f (u) = 0 ,t ∈ [0 ,2π] , u(0) = u(2π),u′(0) = u′(2π), where k > 0 is a constant ,λis positive parameter ,a ∈ C([0 ,2π],[0 ,∞))and a(t) ≠0 on any subinterval of [0 ,2π],f ∈ C([0 ,∞) ,[0 ,∞)) .The proof of the main results is based on Rabinowitz global bifurca-tion theorems and approximation approach .关键词
周期边值问题/正解全局结构/多解性/分歧理论Key words
Periodic boundary value problem/Global structure of positive solution/Multiplicity/Bifurcation theory分类
数理科学引用本文复制引用
叶芙梅..非线性二阶周期边值问题正解的全局结构[J].四川大学学报(自然科学版),2018,55(3):452-456,5.基金项目
国家自然科学基金(11671322) (11671322)
国家自然科学基金天元基金(11626061) (11626061)