| 注册
首页|期刊导航|四川大学学报(自然科学版)|基于综合相似度迁移的协同过滤算法

基于综合相似度迁移的协同过滤算法

金玉 崔兰兰 孙界平 琚生根 王霞

四川大学学报(自然科学版)2018,Vol.55Issue(3):477-482,6.
四川大学学报(自然科学版)2018,Vol.55Issue(3):477-482,6.DOI:10.3969/j.issn.0490-6756.2018.03.010

基于综合相似度迁移的协同过滤算法

Collaborative filtering algorithm based on integrated similarity transfer

金玉 1崔兰兰 2孙界平 1琚生根 1王霞1

作者信息

  • 1. 四川大学计算机学院,成都610065
  • 2. 中国人民解放军78123部队,成都610017
  • 折叠

摘要

Abstract

Data sparsity is one of the most challenges for traditional collaborative filtering algorithms . Transfer learning methods used the potential relationship between the target domain and the auxiliary domain to transfer the auxiliary domain knowledge ,so as to improve the recommendation accuracy of the target domain .T he existing transfer model based on similarity generally used only the rating informa-tion ,and ignores the difference of user rating .To solve these problems ,a transfer model based on com-prehensive similarity is proposed ,used user rating information and user attribute information ,taking ac-count of the difference of user rating ,used the consistency of ratings ,distribution to measure user rating similarity ,improved the accuracy of similarity computation ,thus improved the quality of data migra-tion .Experimental results showed that the proposed model can effectively alleviate the sparsity of data compared with other algorithms .

关键词

数据稀疏/协同过滤/迁移学习/相似度迁移

Key words

Sparse data/Collaborative filtering/Transfer learning/Similarity transfer

分类

信息技术与安全科学

引用本文复制引用

金玉,崔兰兰,孙界平,琚生根,王霞..基于综合相似度迁移的协同过滤算法[J].四川大学学报(自然科学版),2018,55(3):477-482,6.

基金项目

国家自然科学基金(61332006) (61332006)

四川大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0490-6756

访问量0
|
下载量0
段落导航相关论文