| 注册
首页|期刊导航|吉林大学学报(信息科学版)|基于半监督阶梯网络的肝脏CT影像分割

基于半监督阶梯网络的肝脏CT影像分割

金兰依 郭树旭 马树志 刘晓鸣 孙长建 李雪妍

吉林大学学报(信息科学版)2018,Vol.36Issue(2):158-164,7.
吉林大学学报(信息科学版)2018,Vol.36Issue(2):158-164,7.

基于半监督阶梯网络的肝脏CT影像分割

Liver Segmentation in CT Image Based on Semi-Supervised Ladder Network

金兰依 1郭树旭 1马树志 1刘晓鸣 1孙长建 1李雪妍1

作者信息

  • 1. 吉林大学 电子科学与工程学院,长春130012
  • 折叠

摘要

Abstract

Aiming at the challenges, such as fewer labeled samples and expensive manual annotation in medical images, a network of liver CT ( Computed Tomography ) images segmentation model based on semi-supervised ladder is presented. First, the input data is reduced by super-pixel segmentation. Next, the patches are extracted around the center of pixels, and the patches are used to train a semi-supervised model. Finally, the trained model is used to achieve liver segmentation. Experiment results show that a small number of labeled pictures are able to obtain similar results with supervised learning.

关键词

半监督学习/阶梯网络/医学图像分割/超像素

Key words

semi supervised learning/ladder network/medical image segmentation/super-pixel

分类

信息技术与安全科学

引用本文复制引用

金兰依,郭树旭,马树志,刘晓鸣,孙长建,李雪妍..基于半监督阶梯网络的肝脏CT影像分割[J].吉林大学学报(信息科学版),2018,36(2):158-164,7.

基金项目

吉林省自然科学基金学科布局基金资助项目(20180101039JC) (20180101039JC)

吉林大学学报(信息科学版)

OACSTPCD

1671-5896

访问量0
|
下载量0
段落导航相关论文