| 注册
首页|期刊导航|电子学报|基于稀疏贝叶斯的流形学习

基于稀疏贝叶斯的流形学习

陈兵飞 江兵兵 周熙人 陈欢欢

电子学报2018,Vol.46Issue(1):98-103,6.
电子学报2018,Vol.46Issue(1):98-103,6.DOI:10.3969/j.issn.0372-2112.2018.01.014

基于稀疏贝叶斯的流形学习

Manifold Learning Based on Sparse Bayesian Approach

陈兵飞 1江兵兵 1周熙人 1陈欢欢1

作者信息

  • 1. 中国科学技术大学计算机科学与技术学院,安徽合肥230027
  • 折叠

摘要

Abstract

Aiming at the classification performance deficiencies of current supervised learning algorithms on manifold data sets,e.g.low classification accuracy and limited sparsity,a sparse manifold learning algorithm based on sparse Bayesian inference and manifold regularization framework is proposed.The algorithm is called manifold learning based on sparse Bayesian approach (MLSBA).MLSBA is an extension of sparse Bayesian model,by introducing sparse manifold priors to the weights,which can effectively employ the manifold information of sample data to improve the classification accuracy.Extensive experiments are conducted on various datasets,and the results show that MLSBA not only achieves better classification performance on manifold datasets,but also has comparable effectiveness on the non-manifold datasets,and our algorithm has good sparsity on two categories of datasets at the same time.

关键词

拉普拉斯/稀疏贝叶斯/稀疏流形先验/流形正则化

Key words

Laplacian/sparse Bayesian/sparse manifold prior/manifold regularization

分类

信息技术与安全科学

引用本文复制引用

陈兵飞,江兵兵,周熙人,陈欢欢..基于稀疏贝叶斯的流形学习[J].电子学报,2018,46(1):98-103,6.

基金项目

国家自然科学基金(No.91546116,No.61673363,No.61511130083) (No.91546116,No.61673363,No.61511130083)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文