| 注册
首页|期刊导航|高技术通讯|基于RBF神经网络的地磁车位检测优化算法

基于RBF神经网络的地磁车位检测优化算法

顾夫挺 郭海锋 何德峰 彭明洋

高技术通讯2018,Vol.28Issue(3):227-232,6.
高技术通讯2018,Vol.28Issue(3):227-232,6.DOI:10.3772/j.issn.1002-0470.2018.03.006

基于RBF神经网络的地磁车位检测优化算法

An optimization algorithm for geomagnetic parking place detection based on RBF neural networks

顾夫挺 1郭海锋 1何德峰 1彭明洋1

作者信息

  • 1. 浙江工业大学信息工程学院 杭州310023
  • 折叠

摘要

Abstract

Cars' geomagnetic parking place detection is studied .Considering that the baseline drift occurs under cars '' long parking , thus the traditional geomagnetic detection algorithm is prone to missed detection and misleading dur-ing long parking , an algorithm for geomagnetic parking detection based on radial basis function ( RBF) neural net-works is proposed .The algorithm compensates the baseline under long time parking condition to obtain more accu-rate baseline values to improve the detection accuracy .The experimental results show that the baseline value ob-tained by this algorithm quickly approximates the real value , and the compensation effect on the baseline drift is im-proved.After compensating the baseline by RBF neural networks , the false detection rate is reduced by 6.65%and the accuracy rate is improved by 7 .31%.

关键词

地磁检测算法/基线漂移/径向基函数(RBF)/车位检测

Key words

geomagnetic detection algorithm/baseline drift/radial basis function (RBF)/parking place de-tection

引用本文复制引用

顾夫挺,郭海锋,何德峰,彭明洋..基于RBF神经网络的地磁车位检测优化算法[J].高技术通讯,2018,28(3):227-232,6.

基金项目

国家自然科学基金(61374111),浙江省自然科学基金(LY14F030012)和浙江省教育科学规划(2016SCG241)资助项目. (61374111)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文