| 注册
首页|期刊导航|吉林大学学报(理学版)|基于多纹理CS-LBP特征的 多视角人脸检测算法

基于多纹理CS-LBP特征的 多视角人脸检测算法

崔凯 才华 陈广秋 谷欣超 孙俊喜

吉林大学学报(理学版)2018,Vol.56Issue(3):610-616,7.
吉林大学学报(理学版)2018,Vol.56Issue(3):610-616,7.DOI:10.13413/j.cnki.jdxblxb.2018.03.24

基于多纹理CS-LBP特征的 多视角人脸检测算法

Multi-view Face Detection Algorithm Based on Multi-texture CS-LBP Features

崔凯 1才华 1陈广秋 1谷欣超 2孙俊喜3

作者信息

  • 1. 长春理工大学电子信息工程学院 ,长春130022
  • 2. 长春理工大学计算机科学技术学院 ,长春130022
  • 3. 东北师范大学信息科学与技术学院 ,长春 130117
  • 折叠

摘要

Abstract

We proposed a multi-texture centrosymmetric local binary pattern (CS-LBP ) feature to realize multi-view face detection in complex environments .The feature retained the characteristics of Haar ordinal relations ,so we drew on the experience of the combination of local binary pattern (LBP) to extract features from four texture directions ,such as horizontal ,vertical ,+45° and -45° ,so as to ensure the robustness of face detection in direction ,illumination ,rotation and so on .The algorithm adopted the cascade architecture .First ,face images were partitioned according to different angles of view ,and multi-texture features were extracted respectively .Then some independent classifiers were designed to eliminate the non-face window step by step .Finally ,the multilayer perceptron (MLP)was used to synthesize the detection effect of each angle of view to output the detection results .The results of verification experiments on data sets FDDB and CM U PIE show that this method is effective for multi-view face detection in complex environment .Compared with traditional convolution neural network face detection method ,this method has higher accuracy .

关键词

人脸检测/积分图/多纹理中心对称局部二值模式/级联结构

Key words

face detection/integration graph/multi-texture centrosymmetric local binary pattern/cascade architecture

分类

信息技术与安全科学

引用本文复制引用

崔凯,才华,陈广秋,谷欣超,孙俊喜..基于多纹理CS-LBP特征的 多视角人脸检测算法[J].吉林大学学报(理学版),2018,56(3):610-616,7.

基金项目

国家自然科学基金(批准号:61172111)、吉林省科技发展计划项目(批准号:20160101260JC)和吉林省教育厅"十三五"科学技术研究项目(批准号:JJKH20170625KJ). (批准号:61172111)

吉林大学学报(理学版)

OA北大核心CSTPCD

1671-5489

访问量0
|
下载量0
段落导航相关论文