| 注册
首页|期刊导航|计算机工程|基于深度游走模型的标签传播社区发现算法

基于深度游走模型的标签传播社区发现算法

冯曦 朱福喜 刘世超

计算机工程2018,Vol.44Issue(3):220-225,232,7.
计算机工程2018,Vol.44Issue(3):220-225,232,7.DOI:10.3969/j.issn.1000-3428.2018.03.037

基于深度游走模型的标签传播社区发现算法

Label Propagation Community Discovery Algorithm Based on DeepWalk Model

冯曦 1朱福喜 1刘世超2

作者信息

  • 1. 武汉大学计算机学院,武汉430072
  • 2. 汉口学院计算机科学与技术学院,武汉430212
  • 折叠

摘要

Abstract

Aiming at the problem of low accuracy in traditional Label Propagation Algorithm(LPA),an improved label propagation algorithm based on DeepWalk model is proposed.Firstly,the algorithm takes the social network as the input of the DeepWalk model,samples the nodes in the network to get random sequences by means of a deep random walk,and uses SkipGram model to train the samples in neural network.Secondly,computes the kernel part of SkipGram model by hierarchical Softmax and obtains the feature vector of the nodes,and then calculates the similarity between the nodes.Finally,takes the similarity of the nodes as the weight during the label propagation procedure,and then gets the results of community detection.Experimental results on 6 real network dataset and synthetic dataset show that,compares with the traditional label propagation algorithm,the improved algorithm gets the higher accuracy,and especially when the nodes' number is more than 100 in real network dataset,the Q shows 10% rise in improved algorithm.

关键词

深度游走模型/随机序列/特征向量/SkipGram模型/节点相似度/传播迭代

Key words

DeepWalk model/random sequence/feature vector/SkipGram model/node similarity/propagation iteration

分类

信息技术与安全科学

引用本文复制引用

冯曦,朱福喜,刘世超..基于深度游走模型的标签传播社区发现算法[J].计算机工程,2018,44(3):220-225,232,7.

基金项目

国家自然科学基金(61272277). (61272277)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文