| 注册
首页|期刊导航|计算机工程与应用|基于密度二分法的密度峰值聚类方法

基于密度二分法的密度峰值聚类方法

许朝阳 林耀海 张萍

计算机工程与应用2018,Vol.54Issue(12):138-145,8.
计算机工程与应用2018,Vol.54Issue(12):138-145,8.DOI:10.3778/j.issn.1002-8331.1710-0034

基于密度二分法的密度峰值聚类方法

Density peaks clustering method based on density dichotomy

许朝阳 1林耀海 2张萍1

作者信息

  • 1. 莆田学院 信息工程学院,福建 莆田 351100
  • 2. 福建农林大学 计算机与信息学院,福州 350002
  • 折叠

摘要

Abstract

Density Peaks Clustering(DPC)is a famous cluster algorithm for various data, regardless of their shapes or features. It has been widely studied and applied to solve problems in many fields in recent years. However, its clustering effect is reduced when the densities of the cluster centers differ greatly, or there are many peaks of density in a certain cluster. To address it, a density peaks clustering method based on density dichotomies is proposed. Firstly, the global aver-age density of each point is obtained and the data are divided into two groups according to high density and low density. Secondly, it identifies the clustering centers according to the decision diagram of high density points and then merges the clustering centers if it is within reachable distance. Finally, the high density points and the low density points are assigned to the appropriate clustering centers according to the strategy proposed in this paper. Experiments on several synthetic and real datasets show that the clustering results of the proposed algorithm are better than those of existing DPC algorithms.

关键词

密度峰值聚类/密度二分法/决策图/高密度点

Key words

Density Peaks Clustering(DPC)/density dichotomy/decision diagram/high density points

分类

信息技术与安全科学

引用本文复制引用

许朝阳,林耀海,张萍..基于密度二分法的密度峰值聚类方法[J].计算机工程与应用,2018,54(12):138-145,8.

基金项目

莆田市科技局项目(No.2015G2011) (No.2015G2011)

福建省自然科学基金(No.2014J01073) (No.2014J01073)

国家自然科学青年科学基金(No.31300473). (No.31300473)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文