| 注册
首页|期刊导航|计算机应用研究|基于局部Fisher判别分析的复杂化工过程故障诊断

基于局部Fisher判别分析的复杂化工过程故障诊断

郭金玉 韩建斌 李元 徐进学

计算机应用研究2018,Vol.35Issue(4):1122-1125,1129,5.
计算机应用研究2018,Vol.35Issue(4):1122-1125,1129,5.DOI:10.3969/j.issn.1001-3695.2018.04.035

基于局部Fisher判别分析的复杂化工过程故障诊断

Fault diagnosis of complex chemical process based on local Fisher discriminant analysis

郭金玉 1韩建斌 1李元 1徐进学2

作者信息

  • 1. 沈阳化工大学信息工程学院,沈阳110142
  • 2. 大连海事大学船舶电气工程学院,辽宁大连116026
  • 折叠

摘要

Abstract

In order to improve the ability of fault detection and classification of complex chemical process,this paper proposed a fault diagnosis method of complex chemical process based on LFDA.Firstly,it calculated the local within-class and betweenclass scatter matrix of training data to find the projection direction.Secondly,it projected the training and test data into the projection vector for extracting the feature vector.Finally it calculated the Euclidean distances between feature vectors,and used KNN for classification.It applied the proposed method to the TE process.The monitoring results show that LFDA is better than FDA and KFDA,and LFDA method has the advantages of high accuracy and high sensitivity in classification and fault detection of different classes.

关键词

复杂化工过程/故障诊断/Fisher判别分析/核Fisher判别分析/局部Fisher判别分析/KNN分类器

Key words

complex chemical process/fault diagnosis/Fisher discriminant analysis/kernel Fisher discriminant analysis/local Fisher discriminant analysis/KNN classifier

分类

信息技术与安全科学

引用本文复制引用

郭金玉,韩建斌,李元,徐进学..基于局部Fisher判别分析的复杂化工过程故障诊断[J].计算机应用研究,2018,35(4):1122-1125,1129,5.

基金项目

国家自然科学基金重大资助项目(61490701) (61490701)

国家自然科学基金资助项目(61673279) (61673279)

辽宁省教育厅重点实验室资助项目(LZ2015059) (LZ2015059)

辽宁省自然科学基金资助项目(201602584) (201602584)

辽宁省教育厅资助项目(L2016007,L2015432) (L2016007,L2015432)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文