| 注册
首页|期刊导航|中国电力|粒子群优化的小波算法在避雷器老化诊断中的应用

粒子群优化的小波算法在避雷器老化诊断中的应用

梁可道

中国电力2018,Vol.51Issue(6):102-106,5.
中国电力2018,Vol.51Issue(6):102-106,5.DOI:10.11930/j.issn.1004-9649.201705062

粒子群优化的小波算法在避雷器老化诊断中的应用

Application of PSO-based Wavelet Algorithm in MOA Aging Diagnosis

梁可道1

作者信息

  • 1. 国网重庆市电力公司检修分公司,重庆 400039
  • 折叠

摘要

Abstract

To solve the de-noise problem of metal oxide arrester (MOA) leakage current, a PSO (particle swarm optimization)-based wavelet de-noising algorithm is proposed. Firstly, the db5 wavelet is used to decompose the leakage current. Secondly, the threshold value is set and the processed wavelet coefficients are reconstructed. Finally, de-noising is achieved through PSO threshold value and the results are verified through MOA current modelling. Studies show that by decomposing the leakage current with db5 and optimizing the threshold value with PSO, the values ofc5,c4,c3,c2 andc1 are found to be 0.32, 0.20, 0.13, 0.02 and 0.01, respectively. The SNR (signal to noise ratio) after de-noise is raised by 7dB compared with the result when just using the stationary wavelet. The results indicate that the de-noising effect of PSO-based wavelet de-noising algorithm is better than that of wavelet de-noising algorithm.

关键词

诊断/老化/粒子群算法/小波算法/消噪/漏电流/金属氧化物避雷器

Key words

diagnose/aging/particle swarm/wavelet/de-noise/leakage current/MOA

分类

信息技术与安全科学

引用本文复制引用

梁可道..粒子群优化的小波算法在避雷器老化诊断中的应用[J].中国电力,2018,51(6):102-106,5.

中国电力

OA北大核心CSCDCSTPCD

1004-9649

访问量0
|
下载量0
段落导航相关论文