| 注册
首页|期刊导航|电力系统自动化|具有电力需求预测更新的智能电网实时定价机制

具有电力需求预测更新的智能电网实时定价机制

代业明 高红伟 高岩 袁光辉

电力系统自动化2018,Vol.42Issue(12):58-63,6.
电力系统自动化2018,Vol.42Issue(12):58-63,6.DOI:10.7500/AEPS20170614008

具有电力需求预测更新的智能电网实时定价机制

Real-time Pricing Mechanism in Smart Grid with Forecasting Update of Power Demand

代业明 1高红伟 1高岩 2袁光辉3

作者信息

  • 1. 青岛大学数学与统计学院,山东省青岛市 266071
  • 2. 上海理工大学管理学院,上海市 200093
  • 3. 上海财经大学信息管理与工程学院,上海市 200433
  • 折叠

摘要

Abstract

In the smart grid environment,the real-time forecasting and pricing of power demand based on demand side management (DSM) is crucial for maintaining supply-demand balance and reducing the peak of power.This paper adopts the Bayesian method to forecast and update the real-time power demand information of users in smart grid.Then,a leader-follower game model is established to model the real-time price and the interaction behavior of power demand strategy between one retailer and multiple customers,and the game equilibrium is analyzed.Numerical simulation analysis shows that,compared with the real-time pricing mechanism in smart grid without updating of electricity demand forecasting,the proposed real-time pricing mechanism with forecasting update of electricity demand is more advantageous to increase users" satisfaction of electricity consumption and facilitate users to participate in DSM,while increase the profit of power retailer.

关键词

智能电网/需求侧管理/实时定价/主从博弈/贝叶斯更新

Key words

smart grid/demand side management(DSM)/real-time pricing/leader-follower game/Bayes updating

引用本文复制引用

代业明,高红伟,高岩,袁光辉..具有电力需求预测更新的智能电网实时定价机制[J].电力系统自动化,2018,42(12):58-63,6.

基金项目

国家自然科学基金资助项目(71571008) (71571008)

国家自然科学基金国际(地区)合作与交流项目(61661136002) (地区)

中国博士后科学基金项目(2016M602104).This work is supported by National Natural Science Foundation of China (No.71571008),the Funds for International Cooperation and Exchange of National Natural Science Foundation of China (No.61661136002) and Post-doctoral Science Foundation of China(No.2016M602104). (2016M602104)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文