| 注册
首页|期刊导航|电力系统自动化|模块化五电平逆变器子模块开路故障的智能诊断方法

模块化五电平逆变器子模块开路故障的智能诊断方法

尹桥宣 段斌 沈梦君 屈相帅

电力系统自动化2018,Vol.42Issue(12):127-133,147,8.
电力系统自动化2018,Vol.42Issue(12):127-133,147,8.DOI:10.7500/AEPS20170714008

模块化五电平逆变器子模块开路故障的智能诊断方法

Intelligent Diagnosis Method for Open-circuit Fault of Sub-modules in Modular Five-level Inverter

尹桥宣 1段斌 2沈梦君 1屈相帅2

作者信息

  • 1. 智能计算与信息处理教育部重点实验室,湘潭大学,湖南省湘潭市 411105
  • 2. 湖南省风电装备与电能变换协同创新中心,湘潭大学,湖南省湘潭市 411105
  • 折叠

摘要

Abstract

Based on the deep learning theory,a novel method for sub-modular(SM)open-circuit fault diagnosis of modular five-level inverter(MFLI)is presented based on the stacked sparse auto-encoder(SSAE).The SM open-circuit fault detection and location problem of MFLI is converted into a classification problem.Firstly,the capacitor voltage signals of all SMs in the MFLI circuit are combined into a 24-channel signal.Then,by moving window along the 24-channel signal with the sliding window,a set of signal segments are acquired which are flattened into vectors and used as SSAE's input subsequently to realize the unsupervised feature learning layer by layer.The deep feature with concise expression of original fault dataset is established and connected to the Softmax classifier to output the fault diagnostic result.In addition,in order to enhance the anti-noise performance of the proposed method,the SSAE is trained by adding Gauss noise to improve the robustness of feature expression.The results show that the proposed fault diagnosis method has the high robustness and versatility with the average accuracy of 98.09% and the average fault diagnosis time of 31.47 ms.

关键词

模块化五电平逆变器/无监督特征学习/栈式稀疏自动编码器/智能诊断/开路故障

Key words

modular five-level inverter (MFLI)/unsupervised feature learning/stacked sparse auto-encoder (SSAE)/intelligent diagnosis/open-circuit fault

引用本文复制引用

尹桥宣,段斌,沈梦君,屈相帅..模块化五电平逆变器子模块开路故障的智能诊断方法[J].电力系统自动化,2018,42(12):127-133,147,8.

基金项目

国家自然科学基金资助项目(61379063).This work is supported by National Natural Science Foundation of China(No.61379063). (61379063)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文