电子学报2017,Vol.45Issue(1):140-146,7.DOI:10.3969/j.issn.0372-2112.2017.01.020
一种联合文本和图像信息的行人检测方法
A Method for Pedestrian Detection by Combining Textual and Visual Information
摘要
Abstract
Existing vision-based pedestrian detection methods encounter many flaws,such as high false and miss detection rates,low detection accuracy on partial occluded and small scale objects,etc.In this paper,we propose a pedestrian detection method combining textual and visual information together.First,we use a vision-based method to initially localize the candidate visual objects.Second,we analyze the text information to get the text mentions corresponding to the visual objects.Finally,we propose a Markov random field-based model to infer the coreference relations between the candidate visual objects and textual mentions,so that the visual and textual information can be fused efficiently.The experimental results on the Caltech pedestrian detection benchmark enriched with textual description information have shown that the proposed method can not only improve the pedestrian detection accuracy by combining textual information with visual information,but also outperform the baseline anaphora resolution model by combining visual information with textual information.关键词
行人检测/马尔科夫随机场/文本-图像信息联合/共指关系/指代消解Key words
pedestrian detection/Markov random field/text and image information combination/coreference relation/anaphora resolution分类
信息技术与安全科学引用本文复制引用
周炫余,刘娟,卢笑,邵鹏,罗飞..一种联合文本和图像信息的行人检测方法[J].电子学报,2017,45(1):140-146,7.基金项目
国家自然科学基金(No.61272274) (No.61272274)
国家自然科学基金青年项目(No.61402340) (No.61402340)
湖北省自然科学基金(No.2014CFB194) (No.2014CFB194)