| 注册
首页|期刊导航|电子学报|基于双词主题模型的半监督实体消歧方法研究

基于双词主题模型的半监督实体消歧方法研究

张雄 陈福才 黄瑞阳

电子学报2018,Vol.46Issue(3):607-613,7.
电子学报2018,Vol.46Issue(3):607-613,7.DOI:10.3969/j.issn.0372-2112.2018.03.014

基于双词主题模型的半监督实体消歧方法研究

Semi-supervised Entity Disambiguation Method Research Based on Biterm Topic Model

张雄 1陈福才 1黄瑞阳1

作者信息

  • 1. 国家数字交换系统工程技术研究中心,河南 郑州 450001
  • 折叠

摘要

Abstract

Aimed at the problem of theme drift of the entity context information, this paper proposes an entity disambiguation method based on biterm topic model. The proposed method considers that the entity has a different theme in a certain semantic environment and the other entity appearing in the same document at the same time can help the disambiguated entity to determine the referred content to a certain extent. Therefore, using the ideas of named entity constructing double words to incorporate collaborative entity relationship to the topic model, and on this basis, we conduct semi-supervised disambiguation using Wikipedia knowledge base. Finally, this paper conducts some relevant experiments on the web text data, and verifies the effectiveness of the proposed algorithm. The experiments show that the proposed method effectively improve the precision of entity disambiguation.

关键词

实体消歧/维基百科/双词主题模型

Key words

entity disambiguation/Wikipedia/biterm topic model

分类

信息技术与安全科学

引用本文复制引用

张雄,陈福才,黄瑞阳..基于双词主题模型的半监督实体消歧方法研究[J].电子学报,2018,46(3):607-613,7.

基金项目

国家自然科学基金(No.61171108) (No.61171108)

国家重点基础研究发展计划("973"计划)资金(No.2012CB315901, No.2012CB315905 ) ("973"计划)

国家科技支撑计划(No.2014BAH30B01) (No.2014BAH30B01)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文