| 注册
首页|期刊导航|电子学报|最佳及几乎最佳高斯整数ZCZ序列集的构造

最佳及几乎最佳高斯整数ZCZ序列集的构造

刘凯 陈盼盼

电子学报2018,Vol.46Issue(3):755-760,6.
电子学报2018,Vol.46Issue(3):755-760,6.DOI:10.3969/j.issn.0372-2112.2018.03.034

最佳及几乎最佳高斯整数ZCZ序列集的构造

Construction of Optimal and Almost Optimal Gaussian Integer Sequence Sets with Zero Correlation Zone

刘凯 1陈盼盼1

作者信息

  • 1. 燕山大学信息科学与工程学院,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

In quasi-synchronous code-division multiple-access (QS-CDMA) system, Gaussian integer sequences with zero correlation zone (ZCZ) used as address sequences can not only suppress the multiple access interference (MAI) and the multipath interference (MPI), but also possess higher spectrum efficiency and transmission bit rate. However, the construction of the sequences is limited at present. In order to solve the problem, this paper presents a method of constructing Gaussian integer sequence sets with ZCZ and perfect Gaussian integer sequences by filtering operation. Based on perfect sequences and periodic sequence sets with ZCZ, the optimal or almost optimal Gaussian integer ZCZ sequence sets can be obtained. Meanwhile, based on perfect sequences, a class of perfect Gaussian integer sequences with odd or even period is constructed. The achieved results of this paper provide more address selection space for high-speed QS-CDMA system.

关键词

高斯整数序列/零相关区/过滤操作/完美序列/正交幅度调制(QAM)序列

Key words

Gaussian integer sequence/zero correlation zone (ZCZ)/filtering operation/perfect sequence/quadrature amplitude modulation (QAM) sequence

分类

信息技术与安全科学

引用本文复制引用

刘凯,陈盼盼..最佳及几乎最佳高斯整数ZCZ序列集的构造[J].电子学报,2018,46(3):755-760,6.

基金项目

国家自然科学基金青年基金(No.61201263 ()

No.61601399) ()

燕山大学基础研究专项(No.16LGA009) (No.16LGA009)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文