| 注册
首页|期刊导航|电子学报|差分进化帝王蝶优化算法求解折扣{0-1}背包问题

差分进化帝王蝶优化算法求解折扣{0-1}背包问题

冯艳红 杨娟 贺毅朝 王改革

电子学报2018,Vol.46Issue(6):1343-1350,8.
电子学报2018,Vol.46Issue(6):1343-1350,8.DOI:10.3969/j.issn.0372-2112.2018.06.010

差分进化帝王蝶优化算法求解折扣{0-1}背包问题

Monarch Butterfly Optimization Algorithm with Differential Evolution for the Discounted {0-1} Knapsack Problem

冯艳红 1杨娟 2贺毅朝 1王改革3

作者信息

  • 1. 河北地质大学信息工程学院,河北石家庄050031
  • 2. 凯理学院数学科学学院,贵州凯里556011
  • 3. 中国海洋大学信息科学与工程学院,山东青岛266100
  • 折叠

摘要

Abstract

Recently,inspired by the migratory behavior of monarch butterflies in nature,a swarm intelligence optimi-zation algorithm,called monarch butterfly optimization algorithm (MBO),is proposed. Since MBO is proposed,it has good performances in various real-world optimization problems. However,migration operator of MBO selects randomly two indi-viduals to generate new offspring,in which the useful search experience of global optimal individual is easily lost. Based on the intrinsic mechanism of the search process of MBO and the character of differential mutation operator,MBO is combined with 7 kinds of DE mutation strategies,respectively. Then a series of experiments are conducted to verify their performance. A DEMBO based on MBO and better differential evolution mutation strategy is presented,in which migration operator is re-placed by differential mutation operator to enhance its global optimization ability. The over-all performance of DEMBO is verified and analyzed by 30 typical discounted {0-1} knapsack problem (D {0-1} KP) instances. The experimental results demonstrate that DEMBO can significantly improve the solution quality and convergence speed under the condition of not in-creasing the time complexity. Meanwhile,the approximation ratio of all the D {0-1} KP instances obtained by DEMBO is close to 1.0.

关键词

折扣{0-1}背包问题/差分进化/帝王蝶优化算法/贪心修复策略/近似比

Key words

discounted {0-1} knapsack problem/differential evolution/monarch butterfly optimization algorithm/greedy repair strategy/approximate ratio

分类

信息技术与安全科学

引用本文复制引用

冯艳红,杨娟,贺毅朝,王改革..差分进化帝王蝶优化算法求解折扣{0-1}背包问题[J].电子学报,2018,46(6):1343-1350,8.

基金项目

江苏省自然科学基金(No.BK20150239) (No.BK20150239)

国家自然科学基金(No.61503165,No.61402207,No.61673196) (No.61503165,No.61402207,No.61673196)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文