| 注册
首页|期刊导航|电网技术|基于长短期记忆网络的风电场发电功率超短期预测

基于长短期记忆网络的风电场发电功率超短期预测

朱乔木 李弘毅 王子琪 陈金富 王博

电网技术2017,Vol.41Issue(12):3797-3802,6.
电网技术2017,Vol.41Issue(12):3797-3802,6.DOI:10.13335/j.1000-3673.pst.2017.1657

基于长短期记忆网络的风电场发电功率超短期预测

Short-Term Wind Power Forecasting Based on LSTM

朱乔木 1李弘毅 2王子琪 1陈金富 1王博3

作者信息

  • 1. 强电磁工程与新技术国家重点实验室(华中科技大学),湖北省 武汉市 430074
  • 2. 国网湖南省电力公司经济技术研究院,湖南省 长沙市 410004
  • 3. 国网湖北省电力公司经济技术研究院,湖北省 武汉市 430077
  • 折叠

摘要

Abstract

Accurate ultra-short-term wind power forecasting is essential to economic dispatching and secure operation of power system with large-scale wind power integrated. To further enhance accuracy of ultra-short-term wind power forecasting, a multivariate method for ultra-short-term wind power forecasting based on long short-term memory (LSTM) was presented in this paper. It sifted multivariate time series highly relevant to wind power with distance analysis, and modeled the time series from the viewpoint of time with LSTM. The real-world data collected from a wind farm in California was applied to verify the conclusions. Results show that the proposed method can forecast wind power using multivariate time series, and outperform artificial neural network and support vector machine with respect to forecasting accuracy.

关键词

风电功率预测/长短期记忆/多变量时间序列/距离分析法

Key words

wind power forecasting/long short-term memory/multivariate time series/distance analysis

分类

信息技术与安全科学

引用本文复制引用

朱乔木,李弘毅,王子琪,陈金富,王博..基于长短期记忆网络的风电场发电功率超短期预测[J].电网技术,2017,41(12):3797-3802,6.

基金项目

国家重点研发计划项目(2016YFB0900100).Project Supported by The National Key Research and Development Program (2016YFB0900100). (2016YFB0900100)

电网技术

OA北大核心CSCDCSTPCD

1000-3673

访问量0
|
下载量0
段落导航相关论文