| 注册
首页|期刊导航|中北大学学报(自然科学版)|一类Caputo分数阶脉冲微分方程的反周期边值问题

一类Caputo分数阶脉冲微分方程的反周期边值问题

宋姝 周碧波 张玲玲

中北大学学报(自然科学版)2018,Vol.39Issue(4):391-396,6.
中北大学学报(自然科学版)2018,Vol.39Issue(4):391-396,6.DOI:10.3969/j.issn.1673-3193.2018.04.004

一类Caputo分数阶脉冲微分方程的反周期边值问题

The Anti-Periodic Boundary Value Problem for a Class of Impulsive Differential Equations of Caputo Fractional Order

宋姝 1周碧波 2张玲玲3

作者信息

  • 1. 山西工程职业技术学院 基础部,山西 太原 030009
  • 2. 吕梁学院 数学系,山西 吕梁 033006
  • 3. 太原理工大学 数学学院,山西太原 030024
  • 折叠

摘要

Abstract

The two-point boundary value problem was studied of a class of anti-periodic impulsive differ-ential equations with dependence on fractional order.With given related definition and lemma,the dif-ferential equation was converted into an integral equation and then an integral operator corresponding to the integral equation was introduced.Finally,the existence and uniqueness for solution were obtained with the defined operator by using Schaefer fixed point theorem and contraction mapping theory.To prove the correctness and feasibility of this approach,two examples were presented to illustrate the main conclusions of this paper.

关键词

反周期/脉冲/分数阶/边值问题

Key words

anti-periodic conditions/pluse/fractional order/boundary value problem

分类

数理科学

引用本文复制引用

宋姝,周碧波,张玲玲..一类Caputo分数阶脉冲微分方程的反周期边值问题[J].中北大学学报(自然科学版),2018,39(4):391-396,6.

基金项目

国家自然科学基金资助项目(11626165) (11626165)

中北大学学报(自然科学版)

1673-3193

访问量4
|
下载量0
段落导航相关论文