| 注册
首页|期刊导航|中北大学学报(自然科学版)|基于深层卷积神经网络的图像美感度分类

基于深层卷积神经网络的图像美感度分类

杨国亮 曾建尤 王志元

中北大学学报(自然科学版)2018,Vol.39Issue(4):467-473,7.
中北大学学报(自然科学版)2018,Vol.39Issue(4):467-473,7.DOI:10.3969/j.issn.1673-3193.2018.04.017

基于深层卷积神经网络的图像美感度分类

Classification of Image Aesthetic Degree Based on Deep Convolution Neural Network

杨国亮 1曾建尤 1王志元1

作者信息

  • 1. 江西理工大学 电气工程与自动化学院,江西 赣州 341000
  • 折叠

摘要

Abstract

Aiming at the problems such as low accuracy and poor description of aesthetic features in im-age aesthetic classification,an algorithm based on deep convolutional neural network for image aesthet-ics classification was proposed.Firstly,the image was input into 5 5-layer convolution neural network to automatically learn ,and obtained more detailed and deep-level aesthetic characteristics,and then the classification of image aesthetic degree was carried out by softmax classifier to obtain the best classifica-tion results.The experimental results show that the proposed algorithm achieves 80.13% and 87.32% accuracy in A1and A0databases,respectively,and achieves better classification accuracy in six scenarios of CUHKPQ database.

关键词

卷积神经网络/特征提取/图像美感度分类

Key words

convolution neural network/feature extraction/classification of image aesthetic degree

分类

通用工业技术

引用本文复制引用

杨国亮,曾建尤,王志元..基于深层卷积神经网络的图像美感度分类[J].中北大学学报(自然科学版),2018,39(4):467-473,7.

基金项目

国家自然科学基金资助项目(51365017) (51365017)

中北大学学报(自然科学版)

1673-3193

访问量0
|
下载量0
段落导航相关论文