| 注册
首页|期刊导航|化工学报|基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量

基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量

张雷 张小刚 陈华

化工学报2018,Vol.69Issue(6):2576-2585,10.
化工学报2018,Vol.69Issue(6):2576-2585,10.DOI:10.11949/j.issn.0438-1157.20171301

基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量

Soft sensors for multi-stage batch processes based on Gath-Geva algorithm and kernel extreme learning machine

张雷 1张小刚 1陈华2

作者信息

  • 1. 湖南大学电气与信息工程学院,湖南 长沙 410082
  • 2. 湖南大学信息科学与工程学院,湖南 长沙 410082
  • 折叠

摘要

Abstract

Because batch processes have strong non-linearity, multi-stage, slow time-evolution, and batch-to-batch variation, conventional single prediction model cannot effectively capture characteristics of multi-stage and inter-stage transition. A novel multi-model soft sensor method was proposed on the basis of Gath-Geva clustering and kernel extreme learning machine (KELM). First, principal component analysis (PCA) was used to extract features of input variables. Then, Gath-Geva algorithm was used to classify different operating stages of the batch process and local KELM model was built for each operating stage. For a query sample, every local KELM predictions were calculated and final predictions were obtained by integrating fuzzy membership of each local KELM as weight and its corresponding prediction value. The numeric simulation results on data of penicillin fermentation show that this multi-model approach has more accurate prediction than single model.

关键词

软测量/间歇过程/主元分析/核极限学习机/Gath-Geva 算法/遗传算法/模型

Key words

soft sensor/batch process/principal component analysis/kernel extreme learning machine/Gath-Geva algorithm/genetic algorithm/modeling

分类

信息技术与安全科学

引用本文复制引用

张雷,张小刚,陈华..基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量[J].化工学报,2018,69(6):2576-2585,10.

基金项目

国家自然科学基金项目(61672216,61673162). supported by the National Natural Science Foundation of China (61672216, 61673162). (61672216,61673162)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量0
|
下载量0
段落导航相关论文