| 注册
首页|期刊导航|吉首大学学报(自然科学版)|基于改进的分形插值与SVM的股指预测模型

基于改进的分形插值与SVM的股指预测模型

黎红 王宏勇

吉首大学学报(自然科学版)2018,Vol.39Issue(3):14-19,6.
吉首大学学报(自然科学版)2018,Vol.39Issue(3):14-19,6.DOI:10.3969/j.cnki.jdxb.2018.03.004

基于改进的分形插值与SVM的股指预测模型

Prediction of Stock Index Based on Fractal Interpolation and SVM

黎红 1王宏勇1

作者信息

  • 1. 南京财经大学应用数学学院,江苏南京210023
  • 折叠

摘要

Abstract

In order to better analyze and predict the short-term trend of stock index time series ,we pro-pose a new method to determine the free parameters of fractal interpolation ,and establish an improved fractal interpolation model .This model is the combined with the support vector machine model to estab-lish a mixed prediction model .The daily closing data of Shanghai composite index is selected as the re-search object which is shown to have long-range dependence thorugh R/S analysis .The time series of Shanghai composite index are analyzed and predicted by the mixed prediction model .The empirical re-sults show that and the new mixed model proposed in this paper has good fitting performance and higher accuracy in short-term prediction .

关键词

分形插值/SVM模型/股指序列/预测

Key words

fractal interpolation/SVM model/stock index series/prediction

分类

管理科学

引用本文复制引用

黎红,王宏勇..基于改进的分形插值与SVM的股指预测模型[J].吉首大学学报(自然科学版),2018,39(3):14-19,6.

基金项目

教育部人文社科规划基金(12YJAZH020 ) (12YJAZH020 )

南京财经大学现代服务业协同创新中心资助项目(ZWFXT14001) (ZWFXT14001)

江苏省普通高校学术学位研究生科研创新计划项目(KYLX16_1337) (KYLX16_1337)

吉首大学学报(自然科学版)

1007-2985

访问量0
|
下载量0
段落导航相关论文