| 注册
首页|期刊导航|计算机工程与应用|基于SQP和自适应搜索的混沌粒子群算法

基于SQP和自适应搜索的混沌粒子群算法

郑庆新 顾晓辉 张洪铭

计算机工程与应用2018,Vol.54Issue(13):131-136,6.
计算机工程与应用2018,Vol.54Issue(13):131-136,6.DOI:10.3778/j.issn.1002-8331.1702-0182

基于SQP和自适应搜索的混沌粒子群算法

Chaotic particle swarm optimization algorithm based on SQP and adaptive search

郑庆新 1顾晓辉 1张洪铭1

作者信息

  • 1. 南京理工大学 机械工程学院,南京 210094
  • 折叠

摘要

Abstract

Chaotic Adaptive Particle Swarm-Sequence Quadratic Programming(CAPSO-SQP)is proposed to overcome the shortcomings of basic PSO algorithm. Based on the basic PSO algorithm, the chaos search and the adaptive inertia weight are added to improve the global convergence ability. In each iteration of the PSO algorithm, the SQP is introduced to speed up the local search and improve the whole searching effectiveness and the computational reliability of constrained optimization problems. The simulation results show that CAPSO-SQP algorithm has high accuracy, good stability and fast convergence. The cantilever structure optimization design results show the feasibility of the algorithm in structural optimi-zation problems, and the solution with respect to CPSO is more accurate and has high reliability and practical value.

关键词

粒子群算法/序列二次规划/混沌搜索/自适应惯性权重

Key words

particle swarm algorithm/sequential quadratic programming/chaos search/adaptive inertia weight

分类

信息技术与安全科学

引用本文复制引用

郑庆新,顾晓辉,张洪铭..基于SQP和自适应搜索的混沌粒子群算法[J].计算机工程与应用,2018,54(13):131-136,6.

基金项目

国家科技重大专项基金(No.004040204). (No.004040204)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文